
2025/05/07 22:59 1/6 Local Persistent Volumes – A Step-by-Step Tutorial

TuxNet DokuWiki - https://www.cooltux.net/

Local Persistent Volumes – A Step-by-Step
Tutorial

Kubernetes local volumes go beta. However, what is it, a Kubernetes local volume? Last time, we
have discovered, how to use Kubernetes hostPath volumes. However, we also have seen, that
hostPath volumes work well only on single node clusters. Here, Kubernetes local volumes help us to
overcome the restriction and we can work in a multi-node environment with no problems.

„Local volumes“ are similar to hostPath volumes, but they allow to pin-point PODs to a specific node,
and thus making sure that a restarting POD always will find the data storage in the state it had left it
before the reboot. They also make sure that other restrictions are met before the used persistent
volume claim is bound to a volume.

Note, the disclaimer on the announcement that local volumes are not suitable for most
applications. They are much easier to handle than clustered file systems like glusterfs,
though. Still, local volumes are perfect for clustered applications like Cassandra.

References

Kubernetes Documentation on persistent Volumes
Katacoda persistent Volumes Hello World with an NFS Docker container

Prerequisites

We need a multi-node Kubernetes Cluster to test all of the features of „local volumes“. A two-
node cluster with 2 GB or better 4 GB RAM each will do.

Step 1: Create StorageClass with WaitForFirstConsumer
Binding Mode

According to the docs, persistent local volumes require to have a binding mode of
WaitForFirstConsumer. the only way to assign the volumeBindingMode to a persistent volume seems
to be to create a storageClass with the respective volumeBindingMode and to assign the storageClass
to the persistent volume. Let us start with

cat > storageClass.yaml << EOF
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: my-local-storage
provisioner: kubernetes.io/no-provisioner

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://www.katacoda.com/courses/kubernetes/storage-introduction

Last
update:
2024/03/12
06:58

it-wiki:kubernetes:local_persistant_storage https://www.cooltux.net/doku.php?id=it-wiki:kubernetes:local_persistant_storage&rev=1710226712

https://www.cooltux.net/ Printed on 2025/05/07 22:59

volumeBindingMode: WaitForFirstConsumer
EOF

kubectl create -f storageClass.yaml

The output should be:

storageclass.storage.k8s.io/my-local-storage created

Step 2: Create Local Persistent Volume

Since the storage class is available now, we can create local persistent volume with a reference to the
storage class we have just created:

cat > persistentVolume.yaml << EOF
apiVersion: v1
kind: PersistentVolume
metadata:
 name: my-local-pv
spec:
 capacity:
 storage: 500Gi
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Retain
 storageClassName: my-local-storage
 local:
 path: /mnt/disk/vol1
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - node1
EOF

Note: You might need to exchange the hostname value „node1“ in the nodeAffinity
section by the name of the node that matches your environment.

The „hostPath“ we had defined in our last blog post is replaced by the so-called „local
path„.

Similar to what we have done in case of a hostPath volume in our last blog post, we need to prepare

2025/05/07 22:59 3/6 Local Persistent Volumes – A Step-by-Step Tutorial

TuxNet DokuWiki - https://www.cooltux.net/

the volume on node1, before we create the persistent local volume on the master:

on the node, where the POD will be located (node1 in our case):
DIRNAME="vol1"
mkdir -p /mnt/disk/$DIRNAME
chcon -Rt svirt_sandbox_file_t /mnt/disk/$DIRNAME
chmod 777 /mnt/disk/$DIRNAME

on master:
kubectl create -f persistentVolume.yaml

The output should look like follows:

persistentvolume/my-local-pv created

Step 3: Create a Persistent Volume Claim

Similar to hostPath volumes, we now create a persistent volume claim that describes the volume
requirements. One of the requirement is that the persistent volume has the volumeBindingMode:
WaitForFirstConsumer. We can assure this by referencing the previously created a storageClass:

cat > persistentVolumeClaim.yaml << EOF
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: my-claim
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: my-local-storage
 resources:
 requests:
 storage: 500Gi
EOF

kubectl create -f persistentVolumeClaim.yaml

With the answer:

persistentvolumeclaim/my-claim created

From point of view of the persistent volume claim, this is the only difference between a local volume
and a host volume. However, different to our observations about host volumes in the last blog post,
the persistent volume claim is not bound to the persistent volume automatically. Instead, it will
remain „Available“ until the first consumer shows up:

kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE

Last
update:
2024/03/12
06:58

it-wiki:kubernetes:local_persistant_storage https://www.cooltux.net/doku.php?id=it-wiki:kubernetes:local_persistant_storage&rev=1710226712

https://www.cooltux.net/ Printed on 2025/05/07 22:59

my-local-pv 500Gi RWO Retain Available
my-local-storage 3m59s

This should change in the next step.

Step 4: Create a POD with local persistent Volume

The Kubernetes Architects have done a good job in abstracting away the volume technology from the
POD. As with other volume technologies, the POD just needs to reference the volume claim. The
volume claim, in turn, specifies its resource requirements. One of those is the volumeBindingMode to
be WairForFirstCustomer. This is achieved by referencing a storageClass with this property:

Once a POD is created that references the volume claim by name, a „best match“ choice is performed
under the restriction that the storage class name matches as well.

Okay, let us perform the last required step to complete the described picture. The only missing piece
is the POD, which we will create now:

cat > http-pod.yaml << EOF
apiVersion: v1
kind: Pod

2025/05/07 22:59 5/6 Local Persistent Volumes – A Step-by-Step Tutorial

TuxNet DokuWiki - https://www.cooltux.net/

metadata:
 name: www
 labels:
 name: www
spec:
 containers:
 - name: www
 image: nginx:alpine
 ports:
 - containerPort: 80
 name: www
 volumeMounts:
 - name: www-persistent-storage
 mountPath: /usr/share/nginx/html
 volumes:
 - name: www-persistent-storage
 persistentVolumeClaim:
 claimName: my-claim
EOF

kubectl create -f http-pod.yaml

This should yield:

pod/www created

Before, we have seen that the persistent volume claim was not bound to a persistent volume yet.
Now, we expect the binding to happen, since the last missing piece of the puzzle has fallen in place
already:

kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE
my-local-pv 500Gi RWO Retain Bound
default/my-claim my-local-storage 10m

Yes, we can see that the status is bound to claim named „default/my-claim“. Since we have not
chosen any namespace, the claim is located in the „default“ namespace.

The POD is up and running:

kubectl get pods
NAME READY STATUS RESTARTS AGE
www 1/1 Running 0 3m29s

Summary

In this post, we have shown that Kubernetes local volumes can be run on multi-node clusters without
the need to pin PODs to certain nodes explicitly. Local volumes with their node affinity rules make

Last
update:
2024/03/12
06:58

it-wiki:kubernetes:local_persistant_storage https://www.cooltux.net/doku.php?id=it-wiki:kubernetes:local_persistant_storage&rev=1710226712

https://www.cooltux.net/ Printed on 2025/05/07 22:59

sure that a POD is bound to a certain node implicitly, though. Kubernetes local volumes have
following features:

Persistent volume claims will wait for a POD to show up before a local persistent volume is
bound
Once a persistent local volume is bound to a claim, it remains bound, even if the requesting
POD has died or has been deleted
A new POD can attach to the existing data in a local volume by referencing the same persistent
volume claim
Similar to NFS shares, Kubernetes persistent local volumes allow multiple PODs to have
read/write access

Kubernetes local persistent volume they work well in clustered Kubernetes environments without the
need to explicitly bind a POD to a certain node. However, the POD is bound to the node implicitly by
referencing a persistent volume claim that is pointing to the local persistent volume. Once a node has
died, the data of all local volumes of that node are lost. In that sense, Kubernetes local persistent
volume cannot compete with distributed solutions like Glusterfs and Portworx volumes.

From:
https://www.cooltux.net/ - TuxNet DokuWiki

Permanent link:
https://www.cooltux.net/doku.php?id=it-wiki:kubernetes:local_persistant_storage&rev=1710226712

Last update: 2024/03/12 06:58

https://www.cooltux.net/
https://www.cooltux.net/doku.php?id=it-wiki:kubernetes:local_persistant_storage&rev=1710226712

	Local Persistent Volumes – A Step-by-Step Tutorial
	References
	Prerequisites
	Step 1: Create StorageClass with WaitForFirstConsumer Binding Mode
	Step 2: Create Local Persistent Volume
	Step 3: Create a Persistent Volume Claim
	Step 4: Create a POD with local persistent Volume
	Summary

